Nuclear Magnetic Resonance (NMR) is the most precise technology in magnetic field measurement.
There are two fundamental methods of detecting the Nuclear Magnetic Resonance. The continuous-wave approach is like tuning a radio: we slowly adjust the frequency until we “tune in” the resonance. To be able to detect it, we must cross and re-cross the resonance, which means we must modulate either the frequency or the magnetic field.
The pulsed-wave approach, on the other hand, is like ringing a bell: we strike the sample with a broad-band pulse, and the sample absorbs and reradiates at the Larmor frequency. The pulsed mode approach requires modern, fast-switching electronics, but it is more straightforward and generally delivers greater precision.
Built on pulsed-wave NMR detection and advanced signal processing, our new generation of magnetometers are faster, more precise and more robust than legacy continuous-wave NMR detectors.